

Charge-Transfer Electronic States: How to Describe Them Theoretically and Their Impact on the Performance of Organic Solar Cells

Jean-Luc Bredas

U. Mons April 10, 2019

- a very brief reminder of the working principle of an OSC
- how can we adequately calculate the geometric structure and optical absorption in extended conjugated polymer chains with alternating electron-rich and electron-poor moieties
- interfacial charge-transfer electronic states at donor-acceptor interfaces
 - description via the 2-state model
 - the need for a 3-state model
 - design rules to minimize voltage losses

brief reminder of the working principle of an organic solar cell

inorganic

high dielectric constantcreation of free carriers

organic

 low dielectric constant; strong electron-electron and electronvibration interactions
 creation of bound e-h pairs: *excitons*

 > need for an electron donor component (often a π-conjugated polymer) and an electron acceptor component (often a "small" molecule):
 exciton dissociation occurs at their interface

bulk hetero-junctions (BHJ) architecture to maximize interfacial area

McGehee & Toney, Darling, Stingelin, Ade,...

electronic processes in an organic solar cell

- 1. photon absorption and exciton formation
- 2. interfacial exciton dissociation and charge separation
- 3. charge transport to electrodes
- 4. charge collection at electrodes

B. Kippelen & JLB, Energy & Environmental Science <u>2</u>, 251 (2009)

JLB, J. Norton, J. Cornil, & V. Coropceanu, Acc. Chem. Res. <u>42</u>, 1691 (2009)

electronic processes in an organic solar cell

- 1. photon absorption and exciton formation
- 2. (interfacial exciton dissociation and charge separation
- 3. charge transport to electrodes
- 4. charge collection at electrodes

B. Kippelen & JLB, Energy & Environmental Science <u>2</u>, 251 (2009)

JLB, J. Norton, J. Cornil, & V. Coropceanu, Acc. Chem. Res. 42, 1691 (2009)

2016

Best Research-Cell Efficiencies

= organic solar cells

GeorgiaInstitute of **Tech**nology

2019

Best Research-Cell Efficiencies

Article

Side-Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High Efficiency Polymer Solar Cells

Yankang Yang,^{†,§} Zhi-Guo Zhang,^{*,†} Haijun Bin,^{†,§} Shanshan Chen,[‡] Liang Gao,^{†,§} Lingwei Xue,[†] Changduk Yang,[‡] and Yongfang Li^{*,†,§,||}

[†]Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

[‡]Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea

[§]University of Chinese Academy of Sciences, Beijing 100049, China

^{II}Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China

major push towards non-fullerene acceptors

Communication

pubs.acs.org/JACS

Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells

Wenchao Zhao,^{†,‡} Sunsun Li,^{†,‡} Huifeng Yao,^{*,†,‡} Shaoqing Zhang,^{†,‡} Yun Zhang,^{†,‡} Bei Yang,^{†,‡} and Jianhui Hou^{*,†,‡}

[†]Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

[‡]University of Chinese Academy of Sciences, Beijing 100049, China

Georgialnstitute

Joule

Article

Georgialnstitute of Technology

Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core

Jun Yuan,¹ Yunqiang Zhang,¹ Liuyang Zhou,^{1,2} Guichuan Zhang,³ Hin-Lap Yip,³ Tsz-Ki Lau,⁴ Xinhui Lu,⁴ Can Zhu,^{1,2} Hongjian Peng,¹ Paul A. Johnson,⁵ Mario Leclerc,⁵ Yong Cao,³ Jacek Ulanski,⁶ Yongfang Li,² and Yingping Zou^{1,7,*}

Joule 3, 1-12 (2019)

theoretical characterization of geometric structure and optical absorption in *extended conjugated polymer chains* with alternating electron-rich and electron-poor moieties

how can we *reliably* describe the electronic structure of extended π-conjugated chains at the quantum-chemical level?

- quantum-chemical methods of high accuracy, such as CC-SD(T), are not applicable to the extended systems of interest
- commonly used density functionals, such as B3LYP, suffer from a delocalization error, which can be traced back to electron selfinteraction (as a consequence, B3LYP favors coplanar systems for which wavefunction delocalization can be maximized)
- *ab initio* Hartree-Fock methods suffer from too much localization

long-range corrected (LCR) hybrid functionals

combine short-range (SR) DFT exchange with long-range (LR) Hartree-Fock exchange in order to reduce electron self-interaction error and thus the localization/delocalization error

H. likura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys. <u>115</u>, 3540 (2001)

in π -conjugated systems:

the range-separation parameter ω depends on:

- molecular size and
- degree of conjugation

LRC functionals need to be optimized for each system separately

T. Körzdörfer, J. Sears, C. Sutton, & JLB
J. Chem. Phys. <u>135</u>, 204107 (2011)
T. Körzdörfer, J. Sears, C. Sutton, & JLB
J. Chem. Phys. <u>135</u>, 204107 (2011)

T. Körzdörfer & JLB Acc. Chem. Res. <u>47</u>, 3284 (2014)

Editorial

pubs.acs.org/cm

Organic Electronics: Does a Plot of the HOMO–LUMO Wave Functions Provide Useful Information?

DOI: 10.1021/acs.chemmater.6b04947 Chem. Mater. 2017, 29, 477–478

Editorial

pubs.acs.org/cm

Organic Electronics: Does a Plot of the HOMO–LUMO Wave Functions Provide Useful Information?

DOI: 10.1021/acs.chemmater.6b04947 Chem. Mater. 2017, 29, 477–478

the answer is usually: NO!

going beyond simplistic HOMO-LUMO plots: Natural Transition Orbitals (NTOs)

Richard L. Martin. J. Chem. Phys. <u>118</u>, 4775 (2003)

TD/DFT tuned ωB97XD/6-31G(d) ω=0.137 bohr⁻¹

optimization of the range-separation parameter ω : PCDTBT as conjugated as polythiophene

L. Pandey, C. Doiron, J.S. Sears, & JLB, PCCP 14, 14243 (2012)

TDDFT B3LYP/6-31G:** Natural Transition Orbital analysis

would imply excitation has strong charge-transfer character

TDDFT tuned LRC wB97/6-31G: Natural Transition Orbital analysis**

in fact, the chromophoric unit has a *much more local nature*

TDDFT tuned LRC **wB97/6-31G****

coupled-oscillator picture

- optimization of range-separation parameter in LRC functionals provides an improved description of the nature of the lowest optical absorptions
- which is due to an *improved balanced description of local and CT* excitations
- (B3LYP would overstabilize CT-state energies and exaggerate the CT character of the lowest excited states)
- LRC and similar methodologies thus prove essential for a reliable description of the excited states at the interface between donor and acceptor components in organic solar cells

charge-transfer electronic states at donor-acceptor interfaces

Computational Methodologies for Developing Structure– Morphology–Performance Relationships in Organic Solar Cells: A Protocol Review

Khanh Do,[‡] Mahesh Kumar Ravva, Tonghui Wang, and Jean-Luc Brédas*

DOI: 10.1021/acs.chemmater.6b03111 Chem. Mater. 2017, 29, 346–354

Ε

Ε

Ε

Georgialnstitute

HOMO and LUMO levels are usually taken from *isolated* components, which means the neglect of: *interfacial - polarization effects*

Ε

exciton \rightarrow charge transfer \rightarrow charge separation

Georgialnstitute

off**Tech**mologiy

the donor/acceptor interfacial CT states mediate charge generation, separation, and recombination

JLB, J. Norton, J. Cornil, & V. Coropceanu, Acc. Chem. Res. <u>42</u>, 1691 (2009)

to minimize energy losses and maximize Voc:

- the CT-state energy distribution should be narrow
- the CT-state energy should be as close as possible to S₁
- the non-radiative recombination paths should be reduced

Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells

Timothy M. Burke, Sean Sweetnam, Koen Vandewal, and Michael D. McGehee*

Adv. Energy Mater. 2015, 5, 1500123

see also: S.M. Menke, N.A. Ran, G.C. Bazan, and R.H. Friend, Joule <u>2</u>, 25-35 (2018)

electronic-state diagrams

electronic-state diagrams

characterization of the charge-transfer (CT) electronic states

how are the CT states characterized experimentally?

generally, their characterization is conducted in the framework of the two-state Mulliken-Hush model, which includes *only* the CT and G states:

K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, and J.V. Manca, PRB 81, 125204 (2010)

TECH THE

optical absorption in tetracene/C₆₀ and rubrene/C₆₀ bilayer

such a two-state model has been used to fit the absorption spectra in systems with low-energy absorption shoulders

K.R. Graham, M.D. McGehee, A. Amassian, *et al.*, *Adv. Mater.* <u>25</u>, 6076 (2013)

optical absorption in the PIPCP/PCBM blend

more recent experimental investigations have found that, in a number of systems, low-energy absorption shoulders are *not* observed

N.A. Ran, G.C. Bazan, T.Q. Nguyen, et al., Adv. Mater. <u>28</u>, 1482 (2016)

this is especially the case in efficient *non-fullerene acceptor/polymer* systems such as the P3TEA/SF-PDI2 blend:

J. Zhao, H. Yan, et al., Nature Energy <u>1</u>, 15027 (2016)

the case of PIPCP / PCBM

Limits for Recombination in a Low Energy Loss **Organic Heterojunction**

S. Matthew Menke,[†] Aditya Sadhanala,[†] Mark Nikolka,[†] Niva A. Ran,[‡] Mahesh Kumar Ravva,[§] Safwat Abdel-Azeim,[§] Hannah L. Stern,[†] Ming Wang,[‡] Henning Sirringhaus,[†] Thuc-Quyen Nguyen,[‡] Jean-Luc Brédas,[§] Guillermo C. Bazan,[‡] and Richard H. Friend^{*,†}

ACSIAN <u>10</u>, 10736-10744 (2016)

Configuration	<i>Е_{ст}</i> (eV)	S ₁ (eV)
Isolated PIPCP		1.62 (1.835)
1	1.52 (0.396)	1.66 (1.135)
2	1.59 (0.025)	1.67 (1.466)
3	1.55 (0.597)	1.61 (0.526)
4	1.57 (0.679)	1.59 (0.548)
5	1.51 (0.172)	1.66 (1.056)
6	1.67 (0.168)	1.58 (1.246)
7	1.73 (0.148)	1.68 (1.322)
8	1.73 (0.367)	1.64 (1.142)

lowest CT state:

- generally ca. 0.1 eV below S₁
- significant oscillator strength

NTO's (natural transition orbitals)

lowest excited state "CT" 1.52 eV

second lowest excited state "LE-S₁" 1.66 eV

NTO's (natural transition orbitals)

lowest excited state "CT" 1.52 eV

second lowest excited state "LE-S₁" 1.66 eV

> hybrid Frenkel-CT character!

lowest excited state "CT" 1.52 eV

Georgialnstitute of Technology

- long-range corrected DFT calculations confirm that the lowest CT state energies in PIPCP-PCBM complexes are only some 0.1 eV below the S₁ energy of PIPCP
- the lowest excitations of the PIPCP-PCBM complexes have hybrid charge-transfer / local excitation (Frenkel) character, consistent with the red shift of absorption in going from PIPCP thin film to PIPCP-PCBM blend

limitations of the two-state model

limitations of the two-state model

- only two states, the CT (D⁺-A⁻) state and the ground (G) state, are considered
- perturbation theory
- semi-classical treatment of high-frequency vibrations
- assumption of Gaussian line shapes

a 3-state approach

X.K. Chen, V. Coropceanu, & JLB, *Nature Commun.* DOI: 10.1038/s41467-018-07707-8 (2018)

TÉCH T

the three-state model

we have developed a *three-state model* that includes the local-excitation (LE) state (= S₁ state of the absorbing material) *in addition to* the charge-transfer (D+A-) state and the ground (G) state and accounts quantum-mechanically for their vibronic couplings

applications of the 3-state methodology

PC₇₀BM

PIPCP

optical absorption of the PBTTT/PCBM blend

S. Sweetnam, M.D. McGehee, JLB, *et al., Chem. Mater.*, <u>28</u>, 1446 (2016)

application of the two-state model leads to:

Georgialnstitute of Technology • an overestimation of the electronic coupling between the D+A- state and the ground state by ca. 270 cm⁻¹

- an underestimation of the relaxed D+A--state energy by 1000 cm⁻¹
- an overestimation of the D+A- state relaxation energy by ca. 500 cm⁻¹

general consequence of the coupling between the D+A- and LE states:

- "hot" CT vibronic states represent hybrid D+A-LE states and are therefore characterized by a significant transition dipole moment
- these can thus be efficiently directly accessed via optical excitation and could open a direct pathway to dissociation into free charge carriers, as soon as their energies are located above the charge-separated states, or below them but within thermal excitation energy

Georgialnstitute

optical absorption of the PIPCP/PCBM blend

N.A. Ran, G.C. Bazan, T.Q. Nguyen, and co-workers Adv. Mater. <u>28</u>, 1482 (2016)

Georgialnstitute of **Tech**nology when the low-energy shoulder of the *electroluminescence* spectrum of PIPCP/PCBM is fitted by a Gaussian in the context of the 2-state model:

the procedure leads to a mere 0.05 eV difference between the polymer LE state and the D+A- state

our best fit to the *absorption* data in the context of the 3-state model leads to:

- a 0.2 eV difference between the polymer LE state and the D+A- state
- a LE-D+A- electronic coupling of 400 cm-1
- a D+A--G electronic coupling of 100 cm⁻¹

through our three-state fit:

• in the case of a large energy offset between the D+A- and LE states: the electronic coupling between the D+A- and LE states can make the shape and intensity of the low-energy shoulder substantially different from those that the semi-classical two-state Mulliken-Hush model would predict

hot CT vibronic states resulting from D+A--LE coupling gain a more substantial transition dipole moment

these hot CT vibronic states, which are directly optically accessible, have energies that can allow them overcome, entirely or at least in part, the electron-hole Coulomb barrier and dissociate easily into free charge carriers

• in the case of a small energy offset between the D+A- and LE states: the absorption spectra hardly show any low-energy absorption feature instead, the D+A--LE coupling leads to a red-shift of the whole low-energy absorption edge

in such instances, a three-state model is *mandatory* in order to extract reliable information on the CT states from the absorption spectra

X.K. Chen, V. Coropceanu, & JLB, *Nature Commun.* DOI: 10.1038/s41467-018-07707-8 (2018)

design rules to limit energy losses

mature materials

ARTICLES https://doi.org/10.1038/s41563-018-0128-z

Design rules for minimizing voltage losses in high-efficiency organic solar cells

Deping Qian¹, Zilong Zheng², Huifeng Yao³, Wolfgang Tress⁴, Thomas R. Hopper⁵, Shula Chen¹, Sunsun Li³, Jing Liu⁶, Shangshang Chen⁶, Jiangbin Zhang^{5,7}, Xiao-Ke Liu¹, Bowei Gao³, Liangqi Ouyang¹, Yingzhi Jin¹, Galia Pozina¹, Irina A. Buyanova¹, Weimin M. Chen¹, Olle Inganäs¹, Veaceslav Coropceanu^{2*}, Jean-Luc Bredas², He Yan⁶, Jianhui Hou³, Fengling Zhang¹, Artem A. Bakulin^{5*} and Feng Gao^{1*}

The open-circuit voltage of organic solar cells is usually lower than the values achieved in inorganic or perovskite photovoltaic devices with comparable bandgaps. Energy losses during charge separation at the donor-acceptor interface and non-radiative recombination are among the main causes of such voltage losses. Here we combine spectroscopic and quantum-chemistry approaches to identify key rules for minimizing voltage losses: (1) a low energy offset between donor and acceptor molecular states and (2) high photoluminescence yield of the low-gap material in the blend. Following these rules, we present a range of existing and new donor-acceptor systems that combine efficient photocurrent generation with electroluminescence yield up to 0.03%, leading to non-radiative voltage losses as small as 0.21 V. This study provides a rationale to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.

looking for either small IP or small EA offset:

Material combination

Georgialnstitute of **Tech**nology

⊏a

we have identified key rules for minimizing voltage losses:

(1) a low energy offset between donor and acceptor molecular states(2) high photoluminescence yield of the low-gap material in the blend

NATURE MATERIALS | VOL 17 | AUGUST 2018 | 703-709 |

we have identified key rules for minimizing voltage losses:

(1) a low energy offset between donor and acceptor molecular states(2) high photoluminescence yield of the low-gap material in the blend

NATURE MATERIALS | VOL 17 | AUGUST 2018 | 703-709 |

can such a design also ensure that:

there could be no additional intrinsic limitation with respect to the Shockley-Queisser limit in terms of V_{OC} and efficiency of organic solar cells compared to other photovoltaic technologies

> "Nature and Role of the Charge-Transfer Electronic States in Organic Solar Cells" V. Coropceanu, X.K. Chen, T. Wang, Z. Zheng, and JLB *Nature Reviews Materials*, invited review, submitted (2019)

Veaceslav Coropceanu, Xiankai Chen, Zilong Zheng, Hong Li, Tonghui Wang, Ajith Ashokan – Georgia Tech

Mahesh Kumar Ravva – SRM University, India Artem Bakulin – Imperial Feng Gao – Linköping Henry Yan – HKUST Matt Menke, Richard Friend – Cambridge

Thank you!